(4/5)^2=x

Simple and best practice solution for (4/5)^2=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/5)^2=x equation:



(4/5)^2=x
We move all terms to the left:
(4/5)^2-(x)=0
We add all the numbers together, and all the variables
-x+(+4/5)^2=0
We add all the numbers together, and all the variables
-1x+(+4/5)^2=0
We multiply all the terms by the denominator
-1x*5)^2+(+4=0
Wy multiply elements
-5x^2+4=0
a = -5; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-5)·4
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-5}=\frac{0-4\sqrt{5}}{-10} =-\frac{4\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-5}=\frac{0+4\sqrt{5}}{-10} =\frac{4\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-5} $

See similar equations:

| 0=4x-1600/x^2 | | -11x+7=31+5x | | 16+3b=b-2 | | 100/(4x5)=5 | | 6(x-6)-5(x-7)=x=6 | | 4^(2x-1)=3*2^(3x-2) | | 8(q+2)=64 | | 61=9m+7 | | 29=v/4+23 | | 6x-15=87. | | 5/7c=13/1 | | 24=-3h+30 | | 4/3(-9x+12-x)=11-9 | | 6=b/3-2 | | 3z=81^2 | | 4(3x+2)=-5(2x-4)+3x | | a/5 +2 = 5 | | 3(y-6)+5=-4 | | 62=0.9d+44 | | 9/11x=-72 | | 10(x-2/5)=3-18 | | 30=5x+-1 | | 5p-8=-4p+10 | | a5 +2 = 5 | | -45=1.5x-30 | | Y=10+b | | -24=-2(6+3z) | | Y=8500-5x | | 4(3x+2)=-3(4x-5) | | 9-2y=-4y-10y-3 | | 15=3+0.75x | | 15x2+45=0 |

Equations solver categories